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Abstract

Ceramic matrix composites are leading candidate materials for a number of applications
in aeronautics, space, energy, and nuclear industries. Potential composite applications
differ in their requirements for thickness. For example, many space applications such as
“nozzle ramps” or “heat exchangers” require very thin (< 1 mm) structures whereas
turbine blades would require very thick parts (> 1 cm). Little has-been-tnvestgated-as-to
the effect of thickness on stress-strain behavior or?éﬁevated temperature tensile properties
controlled by oxidation diffusion. In this study, composites consisting of woven Hi-
Nicalon™ fibers a carbon interphase and CVI SiC matrix were fabricated with different
numbers of plies and thicknesses. The effect of thickness on matrix crack formation,
matrix crack growth and diffusion kinetics will be discussed.
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SiC-SiC composite systems. CVI SiC matrix composites with different stacking
sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon™) layers
were fabricated. The results will be compared to standard C fiber reinforced CVI SiC
matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear
properties of these composites at different temperatures will also be presented. Other
design and implementation issues will be discussed along with advantages and benefits of

using these materials for various components in high temperature applications.
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Composites with Hybrid Lay-up
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+ Create “oxidation fire
C-fibers
+ -Can manipulate ply sequence for thermal-degradation

-walls” to slow down oxidation of

side) or residual stress-management
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.} « 20 “EPN dogbone specimens for.each (12 & mut In grip; 10 min in.gage)

# « % the doghone specimens seal-coated with SIC and the othei ¥, seal-coated with CBS coating .
.+ RT tensile with acoustic emission and elevated temperature stressupture fests were performed in |
alr
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SS; ;owever thls is mostly
due to higher modulus of HiNicalon

~ Matrix cracking occurred at low stresses for all of the
C fiber-containing composites
« Minor intermediate temperature stress-rupture
improvement observed for HiNicalon containing
composites
+ CBS coating significantly improves stress-rupture life at
low stresses, regardiess of C and HiNicalon content
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S0 Ry(G) 518 dogB [ een o34 L oooe booods o Loper
36 Ply (€) - SHS dog - F 1050 03k 006 L 043 | vt
Detaminated Tnix Panels .
Pl () 5HS Straights 038 026 0.04 026 L o4
ZPIYACH 5H8 Steaight 073 0.28 004 0.33 0.38
IPY(C) SHE Steaight og2 | 03z 0.04 035 0.2¢
Epoxy Iniltrsted Panels :
EgPly-5HS(BN1) 5HS dog-8 2.45 0.32 .08 0.26 0.38
EBPly-5H5(BN2) 548 dog-B 245 0.32 0.05 0.27 0.35
EBPly-8HS(BN) 8HS dog-B 237 033 0.05 0.29 0.33

a

Dogbone tensile specimen 203 mm in length, approximately 15.5 mm in width at grip section and 10.3 mm in width at gage section

b Dogbone tensile specimen 152 mm in length, approximately 12.6 mm in width at grip section and 10.3 mm in width at gage se

s Straight-sided tensile specimen152 mm in length and approximately 12.6 mm in width throughout.
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+ Higher density composltes were affected by 90°
minicomposites as low-stress flaw sources, whereas the
matrix cracking behavior of low density 2D woven
composites were not and behave very much like single tow
minicomposites as opposed to high density 2D woven
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